
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. © 2022 Society for Industrial and Applied Mathematics
Vol. 60, No. 5, pp. 2859--2883

NEAR OPTIMALITY OF STOCHASTIC CONTROL FOR
SINGULARLY PERTURBED MCKEAN--VLASOV SYSTEMS\ast 
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Abstract. In this paper, we are concerned with the optimal control problems for a class of
systems with fast-slow processes. The problem under consideration is to minimize a functional subject
to a system described by a two-time scaled McKean--Vlasov stochastic differential equation whose
coefficients depend on state components and their probability distributions. Firstly, we establish the
existence and uniqueness of the invariant probability measure for the fast process. Then, by using
the relaxed control representation and the martingale method, we prove the weak convergence of the
slow process and control process in the original problem, and we obtain an associated limit problem
in which the coefficients are determined by the average of those of the original problem with respect
to the invariant probability measure. Finally, by establishing the nearly optimal control of the limit
problem, we obtain the near optimality of the original problem.
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1. Introduction. Let (\Omega ,\scrF , \{ \scrF t\} t\geq 0,\BbbP ) be a complete probability space with
filtration \{ \scrF t\} t\geq 0 satisfying the usual conditions. W 1(t) and W 2(t) are two mutually
independent d1 and d2-dimensional standard Brownian motions defined on this space.
For any d \geq 1, \scrP (\BbbR d) denotes the set of all probability measures on (\BbbR d,\scrB (\BbbR d)), and
\scrP 2(\BbbR d) denotes the set of the elements in \scrP (\BbbR d) with finite second moment.

In this paper, we consider the controlled system which can be formulated as the
following two-time scaled McKean--Vlasov stochastic differential equation (SDE):
(1.1)\left\{       

dX\varepsilon (t) =
1

\varepsilon 
b(X\varepsilon (t),L (X\varepsilon (t)))dt+

1\surd 
\varepsilon 
\sigma (X\varepsilon (t),L (X\varepsilon (t)))dW 1(t), X\varepsilon (0) = \xi ,

dY \varepsilon (t) = f(X\varepsilon (t),L (X\varepsilon (t)), Y \varepsilon (t),L (Y \varepsilon (t)), u\varepsilon (t))dt
+g(X\varepsilon (t),L (X\varepsilon (t)), Y \varepsilon (t),L (Y \varepsilon (t)))dW 2(t), Y \varepsilon (0) = \zeta ,

where the small parameter \varepsilon > 0 represents the ratio between the time scale of X\varepsilon (t)
and Y \varepsilon (t); L (X\varepsilon (t)) and L (Y \varepsilon (t)) denote the probability distributions of X\varepsilon (t) and
Y \varepsilon (t), respectively; b : \BbbR d1 \times \scrP 2(\BbbR d1) \rightarrow \BbbR d1 , \sigma : \BbbR d1 \times \scrP 2(\BbbR d1) \rightarrow \BbbR d1\times d1 , f : \BbbR d1 \times 
\scrP 2(\BbbR d1)\times \BbbR d2 \times \scrP 2(\BbbR d2)\times U \rightarrow \BbbR d2 , and g : \BbbR d1 \times \scrP 2(\BbbR d1)\times \BbbR d2 \times \scrP 2(\BbbR d2) \rightarrow \BbbR d2\times d2

are Borel measurable functions; and \xi , \zeta are two \scrF 0-measurable random variables. In
(1.1), u\varepsilon (t) is called the control process valued in a compact set U \subset \BbbR r.
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2860 YUN LI, FUKE WU, AND JI-FENG ZHANG

Let the running cost function R : \BbbR d1 \times \scrP 2(\BbbR d1) \times \BbbR d2 \times \scrP 2(\BbbR d2) \times U \rightarrow \BbbR and
the terminal cost function Q : \BbbR d2 \times \scrP 2(\BbbR d2) \rightarrow \BbbR be measurable, and let T0 > 0 be
a given constant. Then, the cost functional is defined as

J\varepsilon (u\varepsilon (\cdot )) = \BbbE 
\Bigl[ \int T0

0

R(X\varepsilon (s),L (X\varepsilon (s)), Y \varepsilon (s),L (Y \varepsilon (s)), u\varepsilon (s))ds

+Q(Y \varepsilon (T0),L (Y \varepsilon (T0)))
\Bigr] 
.(1.2)

A standard optimization problem is to minimize the cost functional J\varepsilon (\cdot ) over an
admissible control space \scrU \varepsilon , that is, to find u\ast ,\varepsilon (\cdot ) \in \scrU \varepsilon such that

(1.3) J\varepsilon (u\ast ,\varepsilon (\cdot )) = inf
u\varepsilon (\cdot )\in \scrU \varepsilon 

J\varepsilon (u\varepsilon (\cdot )).

The motivation for studying the stochastic control problem (1.1)--(1.3), referred to
alternatively as the optimal control of singularly perturbed McKean--Vlasov systems
or singularly perturbed mean-field stochastic optimal control, comes mainly from
various applications of the singularly perturbed stochastic processes in manufacturing
systems, finance, economics, control problems, and many other related fields; see
[20, 21, 22, 23, 46] and the references therein.

If the system (1.1) and the cost functional (1.2) are independent of the prob-
ability distributions L (X\varepsilon (t)) and L (Y \varepsilon (t)), then the problem can be reduced to
the optimal control problem with classical stochastic system, which has been investi-
gated extensively in the literature. For example, [2] used the dynamic programming
approach to study the near optimality of the original problem; [23, 24, 40, 41, 42]
established the nearly optimal control by using the weak convergence.

If the system (1.1) and the cost functional (1.2) are distribution-dependent, i.e.,
the McKean--Vlasov systems, then the corresponding optimal control is a rather new
problem. The analysis of McKean--Vlasov SDEs has a long history beginning with
the pioneering work [29] and has attracted resurgent attention in recent years thanks
to the development of mean-field control, mean-field games, and a wide range of
applications in finance, economics, and complex networked systems [3, 8, 14, 26]. So
far, McKean--Vlasov SDEs have been investigated considerably on strong and weak
well-posedness [8, 15, 16, 17, 27, 39], stochastic control [3, 4, 7, 8, 14, 28, 31, 32, 34,
35, 43, 44], averaging principle for singularly perturbed systems [18, 36], numerical
approximation [5, 11], and invariant probability measure [39], among others. However,
to the best of our knowledge, there is no result concerning the optimal control of
singularly perturbed McKean--Vlasov systems to date.

The optimal control problem considered in this paper is a generalization from
classical SDEs [2, 23, 24, 40, 41, 42] to McKean--Vlasov SDEs. Such control problems
with singularly perturbed diffusion systems turn out to be rather complicated and
difficult to deal with. As a result, it is very important to reduce complexity for
computation and analysis. The main idea is as follows: (i) with respect to the original
problem, it is shown that there exists a reduced problem (limit problem); then, (ii)
by applying the optimal control of the limit problem to the original problem, a nearly
optimal control is obtained for the original problem. Compared with [2, 23, 24, 40,
41, 42], the system in the current setting contains the probability distributions of the
fast-slow variables. This means that the dynamic programming approach cannot be
applied directly.

The objective of this paper is to analyze the near optimality of the optimal control
problem (1.1)--(1.3) by using the weak convergence. To proceed, we first prove that the
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NEAR OPTIMALITY OF PERTURBED MCKEAN--VLASOV SYSTEMS 2861

fast process in (1.1) has a unique invariant probability measure and is exponentially
ergodic. Then, under suitable assumptions, by proving the weak convergence of the
slow process and control process in (1.1), we get a limit problem whose coefficients are
determined by the average of those of the original problem (1.1)--(1.3) with respect
to the invariant probability measure of the fast process. Roughly, for small \varepsilon , the
slow-varying equation in (1.1) is close to the following controlled McKean--Vlasov
SDE:

(1.4) dY (t) = \=f(Y (t),L (Y (t)), u(t))dt+ \=g(Y (t),L (Y (t)))dW (t), Y (0) = \zeta ,

and the corresponding cost functional is given by

(1.5) J(u(\cdot )) = \BbbE 
\Bigl[ \int T0

0

\=R(Y (s),L (Y (s)), u(s))ds+Q(Y (T0),L (Y (T0)))
\Bigr] 
,

where \=f , \=g, and \=R are to be determined in what follows. Note that the limit system
(1.4) no longer contains the fast variable and is much simpler than (1.1). Then, in lieu
of dealing with the original problem (1.1)--(1.3), we consider the limit problem (1.4)--
(1.5). By establishing the optimal or nearly optimal control of the limit problem, we
obtain a nearly optimal control of the original problem (1.1)--(1.3).

Compared with the classical control problems of the singularly perturbed systems,
the main differences here are to treat the probability distributions of the fast-slow
variables in (1.1) and (1.2). To prove the weak convergence of the slow process and
control process in the original problem, we use the martingale method and introduce
some auxiliary terms to approximate the corresponding distributions. Inspired by
[33], we adopt the idea of freezing the slow variable.

The rest of the paper is arranged as follows. In section 2, we introduce some
frequently used notation and give the definition of the relaxed controls. In section 3,
we formulate the precise problem in terms of the relaxed controls. In section 4, we first
deal with the weak convergence and then establish nearly optimal control by virtue
of the limit problem. In section 5, we make additional remarks. Finally, Appendix A
and Appendix B containing the proofs of two propositions are provided at the end of
the paper.

2. Notations and relaxed control. Throughout the paper, unless otherwise
specified, we use the following notations. For any d \geq 1, let | \cdot | denote the Euclidean
norm and \langle \cdot , \cdot \rangle denote the inner product in \BbbR d. For a matrix A, let \| A\| =

\sqrt{} 
tr[AA\top ]

denote the Frobenius norm. For any p \geq 2, we consider the following subspace of
\scrP (\BbbR d):

\scrP p(\BbbR d) :=
\Bigl\{ 
\mu \in \scrP (\BbbR d) : [\mu ]p :=

\int 
\BbbR d

| x| p\mu (dx) < \infty 
\Bigr\} 
.

Note that for any x \in \BbbR d, the Dirac measure \delta x belongs to \scrP p(\BbbR d). Moreover, \scrP p(\BbbR d)
is a Polish space under the Lp-Wasserstein distance

Wp(\mu 1, \mu 2) := inf
\pi \in \scrC (\mu 1,\mu 2)

\Bigl( \int 
\BbbR d\times \BbbR d

| x - y| p\pi (dx, dy)
\Bigr) 1

p

, \mu 1, \mu 2 \in \scrP p(\BbbR d),

where \scrC (\mu 1, \mu 2) is the collection of all couplings for \mu 1 and \mu 2. In other words,
\pi \in \scrC (\mu 1, \mu 2) is a probability measure on \BbbR d \times \BbbR d such that \pi (\cdot \times \BbbR d) = \mu 1(\cdot ) and
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2862 YUN LI, FUKE WU, AND JI-FENG ZHANG

\pi (\BbbR d \times \cdot ) = \mu 2(\cdot ). In particular, if \mu 1 = L (X) and \mu 2 = L (Y ) are the distributions
of random variables X and Y , respectively, then

Wp(\mu 1, \mu 2)
p \leq 

\int 
\BbbR d\times \BbbR d

| x - y| pL ((X,Y ))(dx, dy) = \BbbE | X  - Y | p,

where L ((X,Y )) represents the distribution of random vector (X,Y ); see [6, 8, 37].
Let C\infty 

c (\BbbR d;\BbbR ) denote the family of the functions that are infinitely continuously
differentiable with compact support; C([0, T ];\BbbR d) (C([0,\infty );\BbbR d)) denote the space of
continuous functions on [0, T ] ([0,\infty )) with values in \BbbR d; C and CT denote positive
constants which may change from place to place, and the subscript T is used to
emphasize that the constant depends on T .

Assume that the control space U is a compact set in \BbbR r and the filtration \{ \scrG \varepsilon 
t \} t\geq 0

is given by

\scrG \varepsilon 
t = \sigma \{ X\varepsilon (s),W 1(s),W 2(s), \xi , \zeta ; s \leq t\} .

Then, we introduce the following definition.

Definition 2.1 (see [23, 42]). A U -valued stochastic process u(\cdot ) is called an
ordinary admissible control for (1.1)--(1.3) if it is \{ \scrG \varepsilon 

t \} -progressively measurable and
makes the control problem (1.1)--(1.3) well-defined. The set of all ordinary admissible
controls is denoted by \scrU \varepsilon . An ordinary admissible control u(\cdot ) is said to be a feedback
control if there is a U -valued function u0(y, \nu ) such that u(t) = u0(Y

\varepsilon (t),L (Y \varepsilon (t)))
for almost all \omega , t.

The use of relaxed controls was initiated in [38] for deterministic systems. Its
stochastic counterpart was contained in [13]. Such approaches have regained interest,
and such a formulation has been proved to be quite useful for various stochastic
control problems; see [23, 24] and the references therein. In what follows, we recall
the definition and properties of the relaxed control. Let

\scrR (U \times [0,\infty )) = \{ m(\cdot ) : m(\cdot ) is a measure on the Borel subsets of U \times [0,\infty ),

and m(U \times [0, t]) = t \forall t \geq 0\} ,

and \{ \scrG t\} t\geq 0 be a given filtration satisfying \scrG t \subseteq \scrF t (for instance, we take \scrG t = \scrG \varepsilon 
t for

the control problem (1.1)--(1.3)).

Definition 2.2 (see [23]). A random variable m(\cdot ) with values in \scrR (U\times [0,\infty ))
is said to be an admissible relaxed control if for any B \in \scrB (U), the function defined
by m(B, t) := m(B \times [0, t]) is \{ \scrG t\} -progressively measurable. Or equivalently, m(\cdot ) is
said to be an admissible relaxed control if\int t

0

\int 
B

\varphi (u, s)m(duds)

is progressively measurable with respect to \{ \scrG t\} for any \varphi (\cdot , \cdot ) \in Cb(U \times [0,\infty )) which
is the collection of the bounded and continuous functions defined on U \times [0,\infty ).

It can be shown that if m(\cdot ) is an admissible relaxed control, then there is a
measure-valued function mt(\cdot ) (the ``derivative"") such that m(dudt) = mt(du)dt and
for smooth function \varphi (\cdot , \cdot ),\int \int 

\varphi (u, s)m(duds) =

\int 
ds

\int 
\varphi (u, s)ms(du).

D
ow

nl
oa

de
d 

10
/0

7/
22

 to
 1

24
.1

6.
14

8.
23

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEAR OPTIMALITY OF PERTURBED MCKEAN--VLASOV SYSTEMS 2863

We will be working with the weak convergence of the relaxed control sequence.
To proceed, we topologize \scrR (U \times [0,\infty )) as follows. Let \{ \varphi ni

: i < \infty \} be a countable
dense set of the continuous functions on U \times [0, n] for any n \geq 1. Let

(m,\varphi )t =

\int t

0

\int 
U

\varphi (u, s)m(duds),

and define

d(m1,m2) =

\infty \sum 
n=1

1

2n
dn(m1,m2),

where

dn(m1,m2) =

\infty \sum 
i=1

1

2i

\Bigl( | (m1  - m2, \varphi ni
)n| 

1 + | (m1  - m2, \varphi ni
)n| 

\Bigr) 
.

When we say that mn(\cdot ) \Rightarrow m(\cdot ) for a sequence of random measures, we mean the
convergence in \scrR (U \times [0,\infty )) under this weak topology; see [42] for more details.

In accordance with [23], any ordinary admissible control u(\cdot ) can be represented
as a relaxed control by using mt(du) = \delta u(t)(du), where \delta u(t) is the Dirac measure
concentrated at the point u(t). Moreover, we shall establish that any relaxed control
can be approximated by the ordinary controls for the distribution-dependent case.

The relaxed control setting has clear advantage since, under such a formulation,
the underlying system is linear in the control component. It is thus much easier to
obtain limit results and desired optimal controls. For convenience, we define all m(\cdot )
on [0,\infty ) in what follows. Since the optimization problem considered in this paper
is on [0, T0], we can define the controls or relaxed controls in any admissible way on
[T0,\infty ).

3. Problem formulation. In this section, we reformulate the problem in the
framework of the relaxed control representation. Following the notations in section 2,
an admissible relaxed control for (1.1)--(1.3) is any \scrR (U \times [0,\infty ))-valued random
variable m\varepsilon (\cdot ), such that for any B \in \scrB (U), m\varepsilon (B, t) is progressively measurable with
respect to \{ \scrG \varepsilon 

t \} , where

\scrG \varepsilon 
t = \sigma \{ X\varepsilon (s),W 1(s),W 2(s), \xi , \zeta ; s \leq t\} .

Let \scrR \varepsilon denote the family of all admissible relaxed controls, that is,

\scrR \varepsilon = \{ m\varepsilon (\cdot ) : m\varepsilon (\cdot ) is \scrR (U \times [0,\infty ))-valued random variable,

and m\varepsilon (B, t) is \{ \scrG \varepsilon 
t \} -progressively measurable for any B \in \scrB (U)\} .

Owing to the relaxed control formulation, in lieu of (1.1), we consider the following
controlled diffusion system:
(3.1)\left\{         

dX\varepsilon (t) =
1

\varepsilon 
b(X\varepsilon (t),L (X\varepsilon (t)))dt+

1\surd 
\varepsilon 
\sigma (X\varepsilon (t),L (X\varepsilon (t)))dW 1(t), X\varepsilon (0) = \xi ,

dY \varepsilon (t) =
\Bigl( \int 

U

f(X\varepsilon (t),L (X\varepsilon (t)), Y \varepsilon (t),L (Y \varepsilon (t)), u)m\varepsilon 
t (du)

\Bigr) 
dt

+g(X\varepsilon (t),L (X\varepsilon (t)), Y \varepsilon (t),L (Y \varepsilon (t)))dW 2(t), Y \varepsilon (0) = \zeta ,
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where m\varepsilon (\cdot ) is the relaxed control. Our goal is to find an admissible control m\ast ,\varepsilon (\cdot ) \in 
\scrR \varepsilon such that the cost functional

J\varepsilon (m\varepsilon (\cdot )) = \BbbE 
\Bigl[ \int T0

0

\int 
U

R(X\varepsilon (s),L (X\varepsilon (s)), Y \varepsilon (s),L (Y \varepsilon (s)), u)m\varepsilon 
s(du)ds

\Bigr] 
+\BbbE [Q(Y \varepsilon (T0),L (Y \varepsilon (T0)))](3.2)

is minimized. In addition, we define the corresponding optimal value as

(3.3) v\varepsilon = inf
m\varepsilon (\cdot )\in \scrR \varepsilon 

J\varepsilon (m\varepsilon (\cdot )).

To proceed, we impose the following assumptions.
(H1) The coefficients b and \sigma are continuous on \BbbR d1 \times \scrP 2(\BbbR d1). There exists a

positive constant K such that for any x \in \BbbR d1 and \mu \in \scrP 2(\BbbR d1),

| b(x, \mu )| \vee \| \sigma (x, \mu )\| \leq K(1 + | x| +W2(\mu , \delta 0)).

(H2) For some p \geq 2, there exist positive constants L2 > L1 such that for any
x1, x2 \in \BbbR d1 and \mu 1, \mu 2 \in \scrP 2(\BbbR d1),

2\langle x1  - x2, b(x1, \mu 1) - b(x2, \mu 2)\rangle + (p - 1)\| \sigma (x1, \mu 1) - \sigma (x2, \mu 2)\| 2

\leq L1W2(\mu 1, \mu 2)
2  - L2| x1  - x2| 2.

(H3) Assume

f(x, \mu , y, \nu , u) = f1(y, \nu , u) + f2(x, \mu , y, \nu ),

R(x, \mu , y, \nu , u) = R1(y, \nu , u) +R2(x, \mu , y, \nu ).

The functions f1, R1 are continuous on \BbbR d2 \times \scrP 2(\BbbR d2)\times U . Moreover, there
exists a positive constant L such that for any x \in \BbbR d1 , y1, y2 \in \BbbR d2 , u \in U ,
\mu 1, \mu 2 \in \scrP 2(\BbbR d1), and \nu 1, \nu 2 \in \scrP 2(\BbbR d2),

| f1(y1, \nu 1, u) - f1(y2, \nu 2, u)| \vee | R1(y1, \nu 1, u) - R1(y2, \nu 2, u)| 
\vee | Q(y1, \nu 1) - Q(y2, \nu 2)| \leq L(| y1  - y2| +W2(\nu 1, \nu 2))

and

| f2(x, \mu 1, y1, \nu 1)  - f2(x, \mu 2, y2, \nu 2)| \vee \| g(x, \mu 1, y1, \nu 1) - g(x, \mu 2, y2, \nu 2)\| 
\vee | R2(x, \mu 1, y1, \nu 1) - R2(x, \mu 2, y2, \nu 2)| 
\leq L(| y1  - y2| +W2(\mu 1, \mu 2) +W2(\nu 1, \nu 2)).

(H4) There exist constants \rho , \gamma 1, \gamma 2, \gamma 3 \geq 1 and K such that for any x \in \BbbR d1 ,
y \in \BbbR d2 , u \in U , \mu \in \scrP 2(\BbbR d1), and \nu \in \scrP 2(\BbbR d2),

| f1(y, \nu , u)| \vee | R1(y, \nu , u)| \leq K(1 + | y| +W2(\nu , \delta 0) + | u| \rho )

and

| f2(x, \mu , y, \nu )| \leq K(1 + | x| \gamma 1 + | y| +W2(\mu , \delta 0) +W2(\nu , \delta 0)),

\| g(x, \mu , y, \nu )\| \leq K(1 + | x| \gamma 2 + | y| +W2(\mu , \delta 0) +W2(\nu , \delta 0)),

| R2(x, \mu , y, \nu )| \leq K(1 + | x| \gamma 3 + | y| +W2(\mu , \delta 0) +W2(\nu , \delta 0)).
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To obtain the desired optimal or nearly optimal control, the properties of the fast
process X\varepsilon (\cdot ) in (3.1) are very important. Let \^X\varepsilon (t) = X\varepsilon (\varepsilon t). Then, the equation
for \^X\varepsilon (\cdot ) can be written as

d \^X\varepsilon (t) = b( \^X\varepsilon (t),L ( \^X\varepsilon (t)))dt+ \sigma ( \^X\varepsilon (t),L ( \^X\varepsilon (t)))d \^W 1(t),

where \^W 1(t) = W 1(\varepsilon t)/
\surd 
\varepsilon is a d1-dimensional Brownian motion. Let X(t) = \^X\varepsilon (t).

Then, X(\cdot ) satisfies the following McKean--Vlasov SDE:

(3.4) dX(t) = b(X(t),L (X(t)))dt+ \sigma (X(t),L (X(t)))d \^W 1(t).

Note that the existence and uniqueness of the solution to the fast-varying equation in
(3.1) for any \varepsilon > 0 are equivalent to those of (3.4). The proposition below illustrates
the existence and uniqueness of the solution to (3.4). Furthermore, it is shown that
(3.4) has a unique invariant probability measure.

Proposition 3.1. Suppose that assumptions (H1) and (H2) hold. Then, for any
\scrF 0-measurable random variable \xi satisfying \BbbE | \xi | p < \infty , (3.4) has a unique strong
solution (X(t))t\geq 0 with the initial value X(0) = \xi , and there exists a positive constant
C such that

(3.5) sup
t\geq 0

\BbbE | X(t)| p \leq C.

Moreover, (3.4) has a unique invariant probability measure \mu \in \scrP p(\BbbR d1) such that

Wp(P
\ast 
t \mu 0, \mu ) \leq Wp(\mu 0, \mu )e

 - 1
2 (L2 - L1)t \forall t \geq 0, \mu 0 \in \scrP p(\BbbR d1),

where P \ast 
t \mu 0 is the distribution of X(t) with the initial condition L (X(0)) = \mu 0 and

L1, L2 are positive constants given in (H2).

Remark 3.2. According to Proposition 3.1, for any \varepsilon > 0 and given initial value \xi 
satisfying \BbbE | \xi | p < \infty , the fast-varying equation in (3.1) has a unique strong solution
(X\varepsilon (t))t\geq 0 and

sup
0<\varepsilon \leq 1,t\geq 0

\BbbE | X\varepsilon (t)| p = sup
0<\varepsilon \leq 1,t\geq 0

\BbbE 
\bigm| \bigm| \bigm| X\Bigl( t

\varepsilon 

\Bigr) \bigm| \bigm| \bigm| p \leq sup
t\geq 0

\BbbE | X(t)| p \leq C.

The proof of Proposition 3.1 is presented in Appendix A. For proving the strong
well-posedness, the main technique used is the modified Yamada--Watanabe principle
[15].

The following proposition states that for any relaxed control m\varepsilon (\cdot ) \in \scrR \varepsilon , the
slow-varying equation in (3.1) has a unique strong solution. Consequently, the system
(3.1) is strongly well-posed.

Proposition 3.3. Let assumptions (H1)--(H4) hold, p \geq 4max\{ \gamma 1, \gamma 2\} , and the
initial condition \xi of the fast-varying equation satisfy \BbbE | \xi | p < \infty . Then, for any
\varepsilon > 0, admissible relaxed control m\varepsilon (\cdot ) \in \scrR \varepsilon , and \scrF 0-measurable random variable \zeta 
satisfying \BbbE | \zeta | 4 < \infty , the slow-varying equation in (3.1) has a unique strong solution
(Y \varepsilon (t))t\geq 0 with the initial value Y \varepsilon (0) = \zeta . Moreover, for any T > 0, there exists a
positive constant CT such that

(3.6) sup
0<\varepsilon \leq 1

\BbbE 
\Bigl[ 

sup
0\leq t\leq T

| Y \varepsilon (t)| 4
\Bigr] 
\leq CT .
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Remark 3.4. When p \geq \gamma 3, by Remark 3.2, Proposition 3.3, and assumptions
(H3), (H4), the cost functional J\varepsilon (m\varepsilon (\cdot )) is well-defined and finite for any \varepsilon > 0 and
m\varepsilon (\cdot ) \in \scrR \varepsilon . In fact,

| J\varepsilon (m\varepsilon (\cdot ))| \leq C

\int T0

0

\BbbE [1 + | X\varepsilon (s)| \gamma 3 + | Y \varepsilon (s)| +W2(L (X\varepsilon (s)), \delta 0)

+W2(L (Y \varepsilon (s)), \delta 0)]ds+ C\BbbE [1 + | Y \varepsilon (T0)| +W2(L (Y \varepsilon (T0)), \delta 0)]

\leq CT0 .

The proof of Proposition 3.3 is given in Appendix B.
With respect to the invariant probability measure \mu in Proposition 3.1, define

\=f2(y, \nu ) =

\int 
\BbbR d1

f2(x, \mu , y, \nu )\mu (dx), \=G(y, \nu ) =

\int 
\BbbR d1

(gg\top )(x, \mu , y, \nu )\mu (dx),

\=R2(y, \nu ) =

\int 
\BbbR d1

R2(x, \mu , y, \nu )\mu (dx).

Then, under p \geq max\{ 4\gamma 1, 4\gamma 2, \gamma 3\} , by assumptions (H3), (H4) and Proposition 3.1,
there exist positive constants \=L, \=K such that

| \=f2(y1, \nu 1) - \=f2(y2, \nu 2)| \vee | \=R2(y1, \nu 1) - \=R2(y2, \nu 2)| \leq \=L(| y1  - y2| +W2(\nu 1, \nu 2)),

\| \=G(y1, \nu 1) - \=G(y2, \nu 2)\| 
\leq \=L(1 + | y1| + | y2| +W2(\nu 1, \delta 0) +W2(\nu 2, \delta 0))(| y1  - y2| +W2(\nu 1, \nu 2)),

(3.7)

and

| \=f2(y, \nu )| \vee | \=R2(y, \nu )| \leq \=K(1 + | y| +W2(\nu , \delta 0)),

\| \=G(y, \nu )\| \leq \=K(1 + | y| 2 +W2(\nu , \delta 0)
2),

(3.8)

where y, y1, y2 \in \BbbR d2 and \nu , \nu 1, \nu 2 \in \scrP 2(\BbbR d2). Moreover, the controlled system in the
limit problem can now be written as

dY (t) =
\Bigl( \int 

U

f1(Y (t),L (Y (t)), u)mt(du)
\Bigr) 
dt+ \=f2(Y (t),L (Y (t)))dt

+\=g(Y (t),L (Y (t)))dW (t), Y (0) = \zeta ,(3.9)

and the cost functional is given by

J(m(\cdot )) = \BbbE 
\Bigl[ \int T0

0

\Bigl( \int 
U

R1(Y (s),L (Y (s)), u)ms(du) + \=R2(Y (s),L (Y (s)))
\Bigr) 
ds
\Bigr] 

+\BbbE [Q(Y (T0),L (Y (T0)))],(3.10)

where \=g satisfies \=g \cdot \=g\top = \=G and W (t) is a d2-dimensional Brownian motion. In (3.9)
and (3.10), m(\cdot ) is an admissible relaxed control associated with W (\cdot ), \xi , and \zeta , i.e.,
admissible pair (m(\cdot ),W (\cdot ), \xi , \zeta ). For convenience of the notation, we shall omit the
corresponding Brownian motion and initial values in what follows. Let \scrR 0 denote the
collection of all admissible relaxed controls for the limit problem:

\scrR 0 = \{ m(\cdot ) : m(\cdot ) is \scrR (U \times [0,\infty ))-valued random variable,

and m(B, t) is \{ \scrG t\} -progressively measurable for any B \in \scrB (U)\} ,
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where \scrG t = \sigma \{ W (s), \xi , \zeta ; s \leq t\} . Similar to (3.3), we can also define the optimal value
related to the limit problem as

(3.11) v0 = inf
m(\cdot )\in \scrR 0

J(m(\cdot )).

For any admissible relaxed control m(\cdot ), by assumptions (H3), (H4), (3.7), (3.8),
the coefficients f1, \=f2, and \=g are continuous and linearly growing with respect to
(y, \nu ). This together with the proof of Proposition 3.1 implies that there exists a
weak solution (still denote it by Y (\cdot )) to (3.9). Moreover, for any 0 \leq s, t \leq T0, we
have

(3.12) \BbbE 
\Bigl[ 

sup
0\leq t\leq T0

| Y (t)| 4
\Bigr] 
\leq CT0 , \BbbE | Y (t) - Y (s)| 4 \leq CT0 | t - s| 2, and | J(m(\cdot ))| \leq CT0 .

Therefore, the limit problem (3.9)--(3.11) is well-defined.

4. Weak convergence and near optimality. In this section, we prove the near
optimality of the original problem (1.1)--(1.3) by using the nearly optimal control of the
limit problem (3.9)--(3.11). To this end, we first need to prove the weak convergence
of the slow process and the relaxed control process in the revised problem with relaxed
control (3.1)--(3.3). Then, we establish the nearly optimal control of the limit problem.

For any u \in U , y \in \BbbR d2 , \nu \in \scrP 2(\BbbR d2), and V \in C\infty 
c (\BbbR d2 ;\BbbR ), define an operator

\=Lu by

(4.1) \=Lu(y, \nu )V (y) = \langle \nabla yV (y), f1(y, \nu , u) + \=f2(y, \nu )\rangle +
1

2
tr[\nabla 2

yV (y) \cdot \=G(y, \nu )].

A stochastic process (Y (t),m(t))t\geq 0 is said to satisfy the martingale problem with
operator \=Lu if, for any V \in C\infty 

c (\BbbR d2 ;\BbbR ),

(4.2) MV (t) := V (Y (t)) - V (Y (0)) - 
\int t

0

\int 
U

\=Lu(Y (s),L (Y (s)))V (Y (s))ms(du)ds

is a martingale. Note that the existence of a weak solution to (3.9) is equivalent to the
existence of a solution to the martingale problem (4.1)--(4.2). Then, in what follows,
we shall use this martingale problem to prove that a given stochastic process satisfies
(3.9).

4.1. Weak convergence. In this subsection, we mainly prove that the sequence
\{ (Y \varepsilon (\cdot ),m\varepsilon (\cdot ))\} 0<\varepsilon \leq 1 converges weakly to a stochastic process which is a weak solu-
tion to (3.9). This conclusion is collected in the following theorem.

Theorem 4.1. Let assumptions (H1)--(H4) hold, p \geq max\{ 4\gamma 1, 4\gamma 2, \gamma 3\} , and
\{ m\varepsilon (\cdot )\} 0<\varepsilon \leq 1 be admissible relaxed control. Then, the sequence \{ (Y \varepsilon (\cdot ),m\varepsilon (\cdot ))\} 0<\varepsilon \leq 1

is tight in C([0, T0];\BbbR d2) \times \scrR (U \times [0, T0]), and the limit of any weakly convergent
subsequence (indexed by \varepsilon n) satisfies (3.9). Moreover, if m\varepsilon n(\cdot ) \Rightarrow m(\cdot ) as n \rightarrow \infty ,
then m(\cdot ) \in \scrR 0 and

J\varepsilon n(m\varepsilon n(\cdot )) \rightarrow J(m(\cdot )) as n \rightarrow \infty .

To prove Theorem 4.1, we need the following two lemmas. The first lemma
illustrates the tightness criterion of the random variables valued in C([0, T0];\BbbR d2); see
[25] for the proof.
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Lemma 4.2. The sequence \{ Y \varepsilon (\cdot )\} 0<\varepsilon \leq 1 is tight in C([0, T0];\BbbR d2) if and only if
the following two conditions hold:

(i) there exists a constant q > 0 such that

(4.3) sup
0<\varepsilon \leq 1

\BbbE | Y \varepsilon (0)| q < \infty ;

(ii) there exist constants \alpha , \beta > 0 such that for any 0 \leq s, t \leq T0,

(4.4) sup
0<\varepsilon \leq 1

\BbbE | Y \varepsilon (t) - Y \varepsilon (s)| \alpha \leq CT0
| t - s| 1+\beta .

The lemma below states that the sequence of the random variables valued in
C([0, T0];\BbbR d2), which is relatively compact, can be approximated by step functions;
see [33] for the proof.

Lemma 4.3. Assume Y \varepsilon n \Rightarrow Y in C([0, T0];\BbbR d2). Then, for any \eta > 0, there are
k \geq 1 and \BbbR d2-valued step random functions y1, y2, . . ., yk such that

\BbbP 
\Bigl( k\bigcap 

\ell =1

\Bigl\{ 
sup

0\leq t\leq T0

| Y \varepsilon n(t) - y\ell (t)| > \eta 
\Bigr\} \Bigr) 

< \eta for any n \geq 1,

\BbbP 
\Bigl( k\bigcap 

\ell =1

\Bigl\{ 
sup

0\leq t\leq T0

| Y (t) - y\ell (t)| > \eta 
\Bigr\} \Bigr) 

< \eta .

We are now in position to prove Theorem 4.1.

Proof. We divide this proof into three steps.
Step 1: Tightness. Owing to the compactness of U , U \times [0, T0] is compact,

complete, and separable. As a result, \{ m\varepsilon (\cdot )\} 0<\varepsilon \leq 1 is tight in \scrR (U \times [0, T0]). Recall
that Y \varepsilon (0) = \zeta and \BbbE | \zeta | 4 < \infty . Then, (4.3) holds. Note that

Y \varepsilon (t) = Y \varepsilon (s) +

\int t

s

\int 
U

f(X\varepsilon (r), \mu \varepsilon 
r, Y

\varepsilon (r), \nu \varepsilon r , u)m
\varepsilon 
r(du)dr

+

\int t

s

g(X\varepsilon (r), \mu \varepsilon 
r, Y

\varepsilon (r), \nu \varepsilon r )dW
2(r),

where \mu \varepsilon 
r = \scrL (X\varepsilon (r)) and \nu \varepsilon r = \scrL (Y \varepsilon (r)). Then, for any s, t \in [0, T0], by the

Burkholder--Davis--Gundy inequality (see [25, Theorem 3.28, pp. 166] or [30, The-
orem 1.7.3, p. 40]), assumption (H4), Remark 3.2, and Proposition 3.3, we have

\BbbE | Y \varepsilon (t) - Y \varepsilon (s)| 4

= \BbbE 
\bigm| \bigm| \bigm| \int t

s

\int 
U

f(X\varepsilon (r), \mu \varepsilon 
r, Y

\varepsilon (r), \nu \varepsilon r , u)m
\varepsilon 
r(du)dr +

\int t

s

g(X\varepsilon (r), \mu \varepsilon 
r, Y

\varepsilon (r), \nu \varepsilon r )dW
2(r)

\bigm| \bigm| \bigm| 4
\leq C| t - s| 3 \cdot \BbbE 

\Bigl[ \int t

s

\int 
U

| f(X\varepsilon (r), \mu \varepsilon 
r, Y

\varepsilon (r), \nu \varepsilon r , u)| 4m\varepsilon 
r(du)dr

\Bigr] 
+C| t - s| \cdot \BbbE 

\Bigl[ \int t

s

\| g(X\varepsilon (r), \mu \varepsilon 
r, Y

\varepsilon (r), \nu \varepsilon r )\| 4dr
\Bigr] 

\leq CT0 | t - s| \cdot \BbbE 
\Bigl[ \int t

s

(1 + | X\varepsilon (r)| 4\gamma + | Y \varepsilon (r)| 4 +W2(\mu 
\varepsilon 
r, \delta 0)

4 +W2(\nu 
\varepsilon 
r , \delta 0)

4)dr
\Bigr] 

\leq CT0 | t - s| 2,
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where \gamma = max\{ \gamma 1, \gamma 2\} and CT0
is independent of \varepsilon . Therefore, (4.4) holds, and the

tightness of \{ Y \varepsilon (\cdot )\} 0<\varepsilon \leq 1 follows.
Step 2: Limit point satisfies the martingale problem (4.1)--(4.2). For any fixed

T0 > 0, by the Prokhorov theorem (see [22, Theorem 2, p. 28]), we can extract
a weakly convergent subsequence and use \varepsilon n as its index. Let (Y (\cdot ),m(\cdot )) be the
corresponding limit process. Then, by the Skorohod representation theorem (see [22,
Theorem 3, p. 29]), without changing notation, we get that \BbbP -a.s.,

sup
0\leq t\leq T0

| Y \varepsilon n(t) - Y (t)| \rightarrow 0, m\varepsilon n(\cdot ) \Rightarrow m(\cdot ) as n \rightarrow \infty .

In addition, by Proposition 3.3 and the Vitali convergence theorem (see [1, Theorem
4.5.4, p. 268] or [9, Theorem 4.5.4, p. 101]), we obtain

(4.5) \BbbE 
\Bigl[ 

sup
0\leq t\leq T0

| Y \varepsilon n(t) - Y (t)| 3
\Bigr] 
\rightarrow 0 as n \rightarrow \infty 

and then

(4.6) \BbbE 
\Bigl[ 

sup
0\leq t\leq T0

| Y (t)| 3
\Bigr] 
\leq CT0

.

Applying the definition of martingale, it is sufficient to prove that for any 0 \leq s < t \leq 
T0, integer k1, k2 \geq 1, 0 \leq s1 \leq \cdot \cdot \cdot \leq sk1 \leq s, \varphi 1(\cdot , \cdot ), . . . , \varphi k2(\cdot , \cdot ) \in Cb(U \times [0, T0]),
bounded Lipschitz continuous function h : \BbbR k1d2+k1k2+d1 \rightarrow \BbbR , and V \in C\infty 

c (\BbbR d2 ;\BbbR ),
the following holds:

\BbbE [MV (s, t, h)] := \BbbE 
\Bigl[ \Bigl( 

V (Y (t)) - V (Y (s)) - 
\int t

s

\int 
U

\=Lu(Y (r), \nu r)V (Y (r))mr(du)dr
\Bigr) 

\times h(Y (si), (m,\varphi j)si , \xi ; i \leq k1, j \leq k2)
\Bigr] 
= 0,(4.7)

where \nu r = L (Y (r)). To proceed, we apply the It\^o formula to the function V (\cdot ) and
obtain

\BbbE [Mn
V (s, t, h)]

:= \BbbE 
\Bigl[ \Bigl( 

V (Y \varepsilon n(t)) - V (Y \varepsilon n(s)) - 
\int t

s

\int 
U

\langle \nabla yV (Y \varepsilon n(r)), f1(Y
\varepsilon n(r), \nu \varepsilon nr , u)\rangle m\varepsilon n

r (du)dr

 - 
\int t

s

\langle \nabla yV (Y \varepsilon n(r)), f2(X
\varepsilon n(r), \mu \varepsilon n

r , Y \varepsilon n(r), \nu \varepsilon nr )\rangle dr

 - 1

2

\int t

s

tr[\nabla 2
yV (Y \varepsilon n(r)) \cdot (gg\top )(X\varepsilon n(r), \mu \varepsilon n

r , Y \varepsilon n(r), \nu \varepsilon nr )]dr
\Bigr) 

\times h(Y \varepsilon n(si), (m
\varepsilon n , \varphi j)si , \xi ; i \leq k1, j \leq k2)

\Bigr] 
= \BbbE 

\Bigl[ \int t

s

\langle \nabla yV (Y \varepsilon n(r)), g(X\varepsilon n(r), \mu \varepsilon n
r , Y \varepsilon n(r), \nu \varepsilon nr )dW 2(r)\rangle 

\times h(Y \varepsilon n(si), (m
\varepsilon n , \varphi j)si , \xi ; i \leq k1, j \leq k2)

\Bigr] 
= 0,

where we have used the fact that\Bigl\{ \int t

0

\langle \nabla yV (Y \varepsilon n(r)), g(X\varepsilon n(r), \mu \varepsilon n
r , Y \varepsilon n(r), \nu \varepsilon nr )dW 2(r)\rangle ,\scrF t; t \geq 0
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is a martingale. This together with (4.7) implies that we need only prove

\BbbE [Mn
V (s, t, h)] \rightarrow \BbbE [MV (s, t, h)] as n \rightarrow \infty .

Note that m\varepsilon n(\cdot ) \Rightarrow m(\cdot ) implies (m\varepsilon n , \varphi j)si \rightarrow (m,\varphi j)si for all i \leq k1, j \leq k2. Then,
by the Lebesgue dominated convergence theorem,

(4.8) \BbbE | (m\varepsilon n , \varphi j)si  - (m,\varphi j)si | 2 \rightarrow 0 as n \rightarrow \infty .

Furthermore, by (4.5), (4.8), and the properties of h and V , one can obtain

| \BbbE [(V (Y \varepsilon n(t)) - V (Y \varepsilon n(s)))h(Y \varepsilon n(si), (m
\varepsilon n , \varphi j)si , \xi ; i \leq k1, j \leq k2)]

 - \BbbE [(V (Y (t)) - V (Y (s)))h(Y (si), (m,\varphi j)si , \xi ; i \leq k1, j \leq k2)]| 

\leq C\BbbE 
\Bigl[ 

sup
0\leq t\leq T0

| Y \varepsilon n(t) - Y (t)| 
\Bigr] 
+

k1\sum 
i=1

k2\sum 
j=1

\BbbE | (m\varepsilon n , \varphi j)si  - (m,\varphi j)si | 

\rightarrow 0 as n \rightarrow \infty .(4.9)

Moreover, by assumptions (H3), (H4), (4.5), (4.6), (4.8), and the convergence of
m\varepsilon n(\cdot ), we get\bigm| \bigm| \bigm| \BbbE \Bigl[ \Bigl( \int t

s

\int 
U

\langle \nabla yV (Y \varepsilon n(r)), f1(Y
\varepsilon n(r), \nu \varepsilon nr , u)\rangle m\varepsilon n

r (du)dr
\Bigr) 

\times h(Y \varepsilon n(si), (m
\varepsilon n , \varphi j)si , \xi ; i \leq k1, j \leq k2)

\Bigr] 
 - \BbbE 

\Bigl[ \Bigl( \int t

s

\int 
U

\langle \nabla yV (Y (r)), f1(Y (r), \nu r, u)\rangle mr(du)dr
\Bigr) 

\times h(Y (si), (m,\varphi j)si , \xi ; i \leq k1, j \leq k2)]
\bigm| \bigm| \bigm| 

\leq \BbbE 
\bigm| \bigm| \bigm| \int t

s

\int 
U

\langle \nabla yV (Y (r)), f1(Y (r), \nu r, u)\rangle (m\varepsilon n(dudr) - m(dudr))
\bigm| \bigm| \bigm| 

+CT0

\Bigl( 
\BbbE 
\Bigl[ 

sup
0\leq t\leq T0

| Y \varepsilon n(t) - Y (t)| 2
\Bigr] \Bigr) 1

2

+

k1\sum 
i=1

k2\sum 
j=1

\BbbE | (m\varepsilon n , \varphi j)si  - (m,\varphi j)si | 

\rightarrow 0 as n \rightarrow \infty ,(4.10)

where we have used the fact that for almost all \omega \in \Omega , \langle \nabla yV (Y (r)), f1(Y (r), \nu r, u)\rangle is
a bounded and continuous function in (r, u). Therefore, according to (4.9) and (4.10),
it remains to prove

\BbbE [Zn
V (s, t, h)] := \BbbE 

\Bigl[ \Bigl( \int t

s

\langle \nabla yV (Y \varepsilon n(r)), f2(X
\varepsilon n(r), \mu \varepsilon n

r , Y \varepsilon n(r), \nu \varepsilon nr )\rangle dr

+
1

2

\int t

s

tr[\nabla 2
yV (Y \varepsilon n(r)) \cdot (gg\top )(X\varepsilon n(r), \mu \varepsilon n

r , Y \varepsilon n(r), \nu \varepsilon nr )]dr
\Bigr) 

\times h(Y \varepsilon n(si), (m
\varepsilon n , \varphi j)si , \xi ; i \leq k1, j \leq k2)

\Bigr] 
\rightarrow \BbbE 

\Bigl[ \Bigl( \int t

s

\langle \nabla yV (Y (r)), \=f2(Y (r), \nu r)\rangle dr +
1

2

\int t

s

tr[\nabla 2
yV (Y (r)) \cdot \=G(Y (r), \nu r)]dr

\Bigr) 
\times h(Y (si), (m,\varphi j)si , \xi ; i \leq k1, j \leq k2)

\Bigr] 
=: \BbbE [ZV (s, t, h)] as n \rightarrow \infty .(4.11)
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For any \eta > 0, by using step functions y1, . . ., yk in Lemma 4.3, we can choose
continuous functions \Phi , \Phi 1, . . ., \Phi k : C([0, T0];\BbbR d2) \rightarrow [0, 1] such that

(i) \Phi (y) + \Sigma k
i=\ell \Phi \ell (y) = 1 for any y \in C([0, T0];\BbbR d2);

(ii) supp (\Phi ) \subseteq 
\bigcap k

\ell =1\{ y \in C([0, T0];\BbbR d2) : \kappa \ell (y) > \eta \} ;

(iii) supp (\Phi \ell ) \subseteq \{ y \in C([0, T0];\BbbR d2) : \kappa \ell (y) < 2\eta \} for all 1 \leq \ell \leq k,
where supp (\Phi ) denotes the support set of the function \Phi and \kappa \ell (y) = sup0\leq t\leq T0

| y(t) - 
y\ell (t)| for every y \in C([0, T0];\BbbR d2); see [33] for more details. Let

\varrho n = \Phi (Y \varepsilon n), \varrho = \Phi (Y ), \zeta \ell ,n = \Phi \ell (Y
\varepsilon n), \zeta \ell = \Phi \ell (Y ).

Then, by virtue of Lemma 4.3 again, one has that for any n \geq 1,

\BbbP (supp (\varrho n)) \leq \BbbP 
\Bigl( k\bigcap 

\ell =1

\Bigl\{ 
\omega \in \Omega : sup

0\leq t\leq T0

| Y \varepsilon n(t) - y\ell (t)| > \eta 
\Bigr\} \Bigr) 

< \eta ,

\BbbP (supp (\varrho )) \leq \BbbP 
\Bigl( k\bigcap 

\ell =1

\Bigl\{ 
\omega \in \Omega : sup

0\leq t\leq T0

| Y (t) - y\ell (t)| > \eta 
\Bigr\} \Bigr) 

< \eta .

(4.12)

Moreover, applying \varrho n +\Sigma k
i=\ell \zeta \ell ,n = 1 and \varrho +\Sigma k

i=\ell \zeta \ell = 1, we get

| \BbbE [Zn
V (s, t, h)] - \BbbE [ZV (s, t, h)]| \leq \BbbE [| Zn

V (s, t, h)| \varrho n] + \BbbE [| ZV (s, t, h)| \varrho ]

+
\bigm| \bigm| \bigm| k\sum 
\ell =1

\BbbE [Zn
V (s, t, h)\zeta \ell ,n] - 

k\sum 
\ell =1

\BbbE [ZV (s, t, h)\zeta \ell ]
\bigm| \bigm| \bigm| .(4.13)

Note that \varrho n \leq 1. Then, by assumption (H4), Remark 3.2, Proposition 3.3, (4.12),
the H\"older inequality, and the properties of h and V , one can get

\BbbE [| Zn
V (s, t, h)| \varrho n]

\leq (\BbbE | Zn
V (s, t, h)| 2)

1
2 (\BbbE \varrho 2n)

1
2

\leq CT0

\Bigl( 
1 +

\int t

s

\bigl( 
\BbbE | X\varepsilon n(r)| 4\gamma + (\BbbE | X\varepsilon n(r)| 2)2 + (\BbbE | Y \varepsilon n(r)| 2)2

\bigr) 
dr
\Bigr) 1

2

\times 
\bigl( 
\BbbP (supp (\varrho n))

\bigr) 1
2

\leq CT0

\Bigl( 
1 +

\int t

s

\BbbE | X\varepsilon n(r)| 4\gamma dr
\Bigr) 1

2 \cdot \eta 1
2 \leq CT0\eta 

1
2 ,(4.14)

According to (3.8), (4.6), (4.12), and using the same technique as (4.14), we have

(4.15) \BbbE [| ZV (s, t, h)| \varrho ] \leq (\BbbE | ZV (s, t, h)| 2)
1
2 (\BbbE \varrho 2)

1
2 \leq CT0

\eta 
1
2 .

Let

Z\ell ,n
V (s, t, h) =

\Bigl( \int t

s

\langle \nabla yV (y\ell (r)), f2(X
\varepsilon n(r), \mu \varepsilon n

r , y\ell (r), \nu 
\varepsilon n
r )\rangle dr + 1

2

\int t

s

tr[\nabla 2
yV (y\ell (r))

\times (gg\top )(X\varepsilon n(r), \mu \varepsilon n
r , y\ell (r), \nu 

\varepsilon n
r )]dr

\Bigr) 
h(y\ell (si), (m

\varepsilon n , \varphi j)si , \xi ; i \leq k1, j \leq k2),

Z\ell 
V (s, t, h)=

\Bigl( \int t

s

\langle \nabla yV (y\ell (r)), \=f2(y\ell (r), \nu r)\rangle dr+
1

2

\int t

s

tr[\nabla 2
yV (y\ell (r)) \cdot \=G(y\ell (r), \nu r)]dr

\Bigr) 
\times h(y\ell (si), (m,\varphi j)si , \xi ; i \leq k1, j \leq k2).
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Then, we have

\bigm| \bigm| \bigm| k\sum 
\ell =1

\BbbE [Zn
V (s, t, h)\zeta \ell ,n] - 

k\sum 
\ell =1

\BbbE [ZV (s, t, h)\zeta \ell ]
\bigm| \bigm| \bigm| 

\leq 
k\sum 

\ell =1

\BbbE [| Zn
V (s, t, h) - Z\ell ,n

V (s, t, h)| \zeta \ell ,n] +
k\sum 

\ell =1

\BbbE [| ZV (s, t, h) - Z\ell 
V (s, t, h)| \zeta \ell ]

+

k\sum 
\ell =1

| \BbbE [Z\ell ,n
V (s, t, h)\zeta \ell ,n] - \BbbE [Z\ell (s, t, h)\zeta \ell ]| 

=: I1 + I2 + I3.(4.16)

Let us estimate I1, I2, and I3 one by one. According to assumptions (H3), (H4),
Remark 3.2, Proposition 3.3, and the properties of h and V , we get

| Zn
V (s, t, h) - Z\ell ,n

V (s, t, h)| 

\leq 
\bigm| \bigm| \bigm| \int t

s

\langle \nabla yV (Y \varepsilon n(r)), f2(X
\varepsilon n(r), \mu \varepsilon n

r , Y \varepsilon n(r), \nu \varepsilon n
r )\rangle dr \cdot h(Y \varepsilon n(si), (m

\varepsilon n , \varphi j)si , \xi ; i, j)

 - 
\int t

s

\langle \nabla yV (y\ell (r)), f2(X
\varepsilon n(r), \mu \varepsilon n

r , y\ell (r), \nu 
\varepsilon n
r )\rangle dr \cdot h(y\ell (si), (m\varepsilon n , \varphi j)si , \xi ; i, j)

\bigm| \bigm| \bigm| 
+
1

2

\bigm| \bigm| \bigm| \int t

s

tr[\nabla 2
yV (Y \varepsilon n(r)) \cdot (gg\top )(X\varepsilon n(r), \mu \varepsilon n

r , Y \varepsilon n(r), \nu \varepsilon n
r )]dr

\times h(Y \varepsilon n(si), (m
\varepsilon n , \varphi j)si , \xi ; i, j)

 - 
\int t

s

tr[\nabla 2
yV (y\ell (r)) \cdot (gg\top )(X\varepsilon n(r), \mu \varepsilon n

r , y\ell (r), \nu 
\varepsilon n
r )]dr \cdot h(y\ell (si), (m\varepsilon n , \varphi j)si , \xi ; i, j)

\bigm| \bigm| \bigm| 
\leq CT0

\int t

s

(1 + | X\varepsilon n(r)| 2\gamma + | Y \varepsilon n(r)| 2)dr \cdot sup
0\leq t\leq T0

| Y \varepsilon n(t) - y\ell (t)| .

Note that
\sum k

\ell =1 \zeta \ell ,n \leq 1 and supp (\zeta \ell ,n) \subseteq \{ \omega \in \Omega : sup0\leq t\leq T0
| Y \varepsilon n(t) - y\ell (t)| < 2\eta \} .

Then, by Remark 3.2 and Proposition 3.3, one can calculate

I1 \leq CT0

k\sum 
\ell =1

\int t

s

\BbbE 
\Bigl[ 
(1 + | X\varepsilon n(r)| 2\gamma + | Y \varepsilon n(r)| 2)

\Bigl( 
sup

0\leq t\leq T0

| Y \varepsilon n(t) - y\ell (t)| 
\Bigr) 
\zeta \ell ,n

\Bigr] 
dr

\leq CT0
\eta .(4.17)

Recall that
\sum k

\ell =1 \zeta \ell \leq 1 and supp (\zeta \ell ) \subseteq \{ \omega \in \Omega : sup0\leq t\leq T0
| Y (t)  - y\ell (t)| < 2\eta \} .

Then, by (3.7), (3.8), (4.6), and using a similar technique as (4.17), we have

I2 \leq CT0

k\sum 
\ell =1

\int t

s

\BbbE 
\Bigl[ 
(1 + | Y (r)| 2)

\Bigl( 
sup

0\leq t\leq T0

| Y (t) - y\ell (t)| 
\Bigr) 
\zeta \ell 

\Bigr] 
dr \leq CT0

\eta .(4.18)

In the following, we estimate I3. Note that \zeta \ell ,n \leq 1 and Z\ell 
V (s, t, h) is bounded. Then,

for any 1 \leq \ell \leq k,

| \BbbE [Z\ell ,n
V (s, t, h)\zeta \ell ,n] - \BbbE [Z\ell 

V (s, t, h)\zeta \ell ]| 
\leq \BbbE | Z\ell ,n

V (s, t, h) - Z\ell 
V (s, t, h)| + CT0\BbbE | \zeta \ell ,n  - \zeta \ell | =: I\ell 31 + I\ell 32.(4.19)
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For any 1 \leq \ell \leq k, according to \zeta \ell ,n = \Phi \ell (Y
\varepsilon n), \zeta \ell = \Phi \ell (Y ), and the fact that \Phi \ell is

a bounded continuous function, one can get that \BbbP -a.s., \zeta \ell ,n \rightarrow \zeta \ell . Consequently, by
the Lebesgue dominated convergence theorem, \zeta \ell ,n \leq 1 implies that

(4.20) I\ell 32 \rightarrow 0 as n \rightarrow \infty .

Therefore, it only remains to consider the term I\ell 31. To proceed, we introduce the
following random variable as a bridge:

\^Z\ell ,n
V (s, t, h) =

\Bigl( \int t

s

\langle \nabla yV (y\ell (r)), f2(X
\varepsilon n(r), \mu , y\ell (r), \nu r)\rangle dr +

1

2

\int t

s

tr[\nabla 2
yV (y\ell (r))

\times (gg\top )(X\varepsilon n(r), \mu , y\ell (r), \nu r)]dr
\Bigr) 
h(y\ell (si), (m,\varphi j)si , \xi ; i \leq k1, j \leq k2),

where \mu is the invariant probability measure in Proposition 3.1. Then,

I\ell 31 \leq \BbbE | Z\ell ,n
V (s, t, h) - \^Z\ell ,n

V (s, t, h)| + \BbbE | \^Z\ell ,n
V (s, t, h) - Z\ell 

V (s, t, h)| .

On the one hand, applying assumptions (H3), (H4), Proposition 3.1, Remark 3.2,
Proposition 3.3, (4.5), (4.6), (4.8), and the properties of h and V , one has

\BbbE | Z\ell ,n
V (s, t, h) - \^Z\ell ,n

V (s, t, h)| 

\leq C

\int t

s

\BbbE [| \nabla yV (y\ell (r))| \cdot | f2(X\varepsilon n(r), \mu \varepsilon n
r , y\ell (r), \nu 

\varepsilon n
r )

 - f2(X
\varepsilon n(r), \mu , y\ell (r), \nu r)| ]dr

+C

\int t

s

\BbbE [\| \nabla 2
yV (y\ell (r))\| \cdot \| (gg\top )(X\varepsilon n(r), \mu \varepsilon n

r , y\ell (r), \nu 
\varepsilon n
r )

 - (gg\top )(X\varepsilon n(r), \mu , y\ell (r), \nu r)\| ]dr

+CT0

k1\sum 
i=1

k2\sum 
j=1

(\BbbE | (m\varepsilon n , \varphi j)si  - (m,\varphi j)si | 2)
1
2

\leq CT0

\Bigl( 
\BbbE 
\Bigl[ 

sup
0\leq t\leq T0

| Y \varepsilon n(t) - Y (t)| 2
\Bigr] \Bigr) 1

2

+ CT0

\int t

s

W2(P
\ast 
r
\varepsilon n
\mu \xi , \mu )dr

+CT0

k1\sum 
i=1

k2\sum 
j=1

(\BbbE | (m\varepsilon n , \varphi j)si  - (m,\varphi j)si | 2)
1
2

\rightarrow 0 as n \rightarrow \infty ,(4.21)

in which \mu \xi = L (\xi ). On the other hand, we consider the term \BbbE | \^Z\ell ,n
V (s, t, h)  - 

Z\ell 
V (s, t, h)| . For a sufficiently large N \geq 1 (N is to be chosen later), we consider a

partition \{ tNj \} 0\leq j\leq N of the time interval [s, t]. Let \Delta N = max0\leq j\leq N - 1(t
N
j+1  - tNj )

be decreasing and converge to 0. Define \lfloor s\rfloor N = tNj for all s \in [tNj , tNj+1). Then, we
obtain

\BbbE | \^Z\ell ,n
V (s, t, h) - Z\ell 

V (s, t, h)| 

\leq C\BbbE 
\bigm| \bigm| \bigm| \int t

s

\langle \nabla yV (y\ell (r)), f2(X
\varepsilon n(r), \mu , y\ell (r), \nu r) - f2(X

\varepsilon n(r), \mu , y\ell (r), \nu \lfloor r\rfloor N )\rangle dr
\bigm| \bigm| \bigm| 

+ C\BbbE 
\bigm| \bigm| \bigm| \int t

s

\langle \nabla yV (y\ell (r)), f2(X
\varepsilon n(r), \mu , y\ell (r), \nu \lfloor r\rfloor N ) - \=f2(y\ell (r), \nu \lfloor r\rfloor N )\rangle dr

\bigm| \bigm| \bigm| 
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+ C\BbbE 
\bigm| \bigm| \bigm| \int t

s

\langle \nabla yV (y\ell (r)), \=f2(y\ell (r), \nu \lfloor r\rfloor N ) - \=f2(y\ell (r), \nu r)\rangle dr
\bigm| \bigm| \bigm| 

+ C\BbbE 
\bigm| \bigm| \bigm| \int t

s

tr[\nabla 2
yV (y\ell (r)) \cdot [(gg\top )(X\varepsilon n(r), \mu , y\ell (r), \nu r)

 - (gg\top )(X\varepsilon n(r), \mu , y\ell (r), \nu \lfloor r\rfloor N )]]dr
\bigm| \bigm| \bigm| 

+ C\BbbE 
\bigm| \bigm| \bigm| \int t

s

tr[\nabla 2
yV (y\ell (r)) \cdot [(gg\top )(X\varepsilon n(r), \mu , y\ell (r), \nu \lfloor r\rfloor N ) - \=G(y\ell (r), \nu \lfloor r\rfloor N )]]dr

\bigm| \bigm| \bigm| 
+ C\BbbE 

\bigm| \bigm| \bigm| \int t

s

tr[\nabla 2
yV (y\ell (r)) \cdot ( \=G(y\ell (r), \nu \lfloor r\rfloor N ) - \=G(y\ell (r), \nu r))]dr

\bigm| \bigm| \bigm| 
=: J\ell 

11 + J\ell 
12 + J\ell 

13 + J\ell 
21 + J\ell 

22 + J\ell 
23,

where \nu \lfloor r\rfloor N = L (Y (\lfloor r\rfloor N )). In the following, we estimate these terms one by one.
According to assumption (H3) and (3.7), one can get

J\ell 
11 + J\ell 

13 \leq C

\int t

s

W2(\nu \lfloor r\rfloor N , \nu r)dr \leq CT0

\Bigl( 
\BbbE 
\Bigl[ 

sup
s\leq r\leq t

| Y (\lfloor r\rfloor N ) - Y (r)| 2
\Bigr] \Bigr) 1

2

.

Note that \BbbP -a.s.,

sup
s\leq r\leq t

| Y (\lfloor r\rfloor N ) - Y (r)| \leq max
0\leq j\leq N - 1

sup
tNj \leq r\leq tNj+1

| Y (r) - Y (tNj )| \rightarrow 0 as N \rightarrow \infty .

Then, by (4.6) and the Vitali convergence theorem, we have

(4.22) J\ell 
11 + J\ell 

13 \rightarrow 0 as N \rightarrow \infty .

Applying assumptions (H3), (H4), (3.7), (4.6), Proposition 3.1, Remark 3.2 and using
the same technique as J\ell 

11 + J\ell 
13 yield that

J\ell 
21 + J\ell 

23 \leq C

\int t

s

\BbbE [\| \nabla 2
yV (y\ell (r))\| \cdot (1 + | X\varepsilon n(r)| \gamma 2 + | y\ell (r)| +W2(\mu , \delta 0)

+W2(\nu \lfloor r\rfloor N , \delta 0) +W2(\nu r, \delta 0)) \cdot W2(\nu \lfloor r\rfloor N , \nu r)]dr

\leq CT0

\Bigl( 
\BbbE 
\Bigl[ 

sup
s\leq r\leq t

| Y (\lfloor r\rfloor N ) - Y (r)| 2
\Bigr] \Bigr) 1

2 \rightarrow 0 as N \rightarrow \infty .

This together with (4.22) implies that for any \epsilon > 0, there exists a sufficiently large
N such that

(4.23) J\ell 
11 + J\ell 

13 + J\ell 
21 + J\ell 

23 \leq \epsilon 

2
.

Below, we estimate the terms J\ell 
12 and J\ell 

22 by using the ergodic theorem (see [12,
Theorem 3.3.1, p. 30]). Since y\ell is a step function on [0, T0], we can reselect N and
a partition of [s, t], such that (4.23) holds, and on the interval (tNj , tNj+1), y\ell (r) = z\ell j
and Y (\lfloor r\rfloor N ) = Y (tNj ). Consequently,\int t

s

\langle \nabla yV (y\ell (r)), f2(X
\varepsilon n(r), \mu , y\ell (r), \nu \lfloor r\rfloor N )\rangle dr

=

N - 1\sum 
j=0

\int tNj+1

tNj

\langle \nabla yV (z\ell j), f2(X
\varepsilon n(r), \mu , z\ell j , \nu tNj )\rangle dr
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and \int t

s

tr[\nabla 2
yV (y\ell (r)) \cdot (gg\top )(X\varepsilon n(r), \mu , y\ell (r), \nu \lfloor r\rfloor N )]dr

=

N - 1\sum 
j=0

\int tNj+1

tNj

tr[\nabla 2
yV (z\ell j) \cdot (gg\top )(X\varepsilon n(r), \mu , z\ell j , \nu tNj )]dr.

By assumption (H4), Proposition 3.1, and the ergodic theorem, we have that \BbbP -a.s.,

1

tNj+1  - tNj

\int tNj+1

tNj

\langle \nabla yV (z\ell j), f2(X
\varepsilon n(r), \mu , z\ell j , \nu tNj )\rangle dr

=
\varepsilon n

tNj+1  - tNj

\int tNj+1
\varepsilon n

tN
j
\varepsilon n

\langle \nabla yV (z\ell j), f2(X(r), \mu , z\ell j , \nu tNj )\rangle dr \rightarrow \langle \nabla yV (z\ell j), \=f2(z\ell j , \nu tNj )\rangle 

and

1

tNj+1  - tNj

\int tNj+1

tNj

tr[\nabla 2
yV (z\ell j)\cdot (gg\top )(X\varepsilon n(r), \mu , z\ell j , \nu tNj )]dr \rightarrow tr[\nabla 2

yV (z\ell j) \=G(z\ell j , \nu tNj )].

Therefore, one can obtain that \BbbP -a.s.,\int t

s

\langle \nabla yV (y\ell (r)), f2(X
\varepsilon n(r), \mu , y\ell (r), \nu \lfloor r\rfloor N )\rangle dr

\rightarrow 
\int t

s

\langle \nabla yV (y\ell (r)), \=f(yi(r), \nu \lfloor r\rfloor N )\rangle dr as n \rightarrow \infty (4.24)

and \int t

s

tr[\nabla 2
yV (y\ell (r)) \cdot (gg\top )(X\varepsilon n(r), \mu , y\ell (r), \nu \lfloor r\rfloor N )]dr

\rightarrow 
\int t

s

tr[\nabla 2
yV (y\ell (r)) \cdot \=G(y\ell (r), \nu \lfloor r\rfloor N )]dr as n \rightarrow \infty .(4.25)

Using assumption (H4), (4.6), Proposition 3.1, and Remark 3.2, we compute

\BbbE 
\bigm| \bigm| \bigm| \int t

s

\langle \nabla yV (y\ell (r)), f2(X
\varepsilon n(r), \mu , y\ell (r), \nu \lfloor r\rfloor N )\rangle dr

\bigm| \bigm| \bigm| 2
\leq C

\int t

s

\BbbE (1 + | X\varepsilon n(r)| 2\gamma 1 +W2(\mu , \delta 0)
2 +W2(\nu \lfloor r\rfloor N , \delta 0)

2)dr < \infty ,

\BbbE 
\bigm| \bigm| \bigm| \int t

s

tr[\nabla 2
yV (y\ell (r)) \cdot (gg\top )(X\varepsilon n(r), \mu , y\ell (r), \nu \lfloor r\rfloor N )]dr

\bigm| \bigm| \bigm| 2 < \infty .

This together with (4.23)--(4.25) implies that for any \epsilon > 0, there exists a sufficiently

large n0 such that for all n \geq n0, \BbbE | \^Z\ell ,n
V (s, t, h)  - Z\ell 

V (s, t, h)| \leq \epsilon . By (4.19)--(4.21),
one gets I3 \rightarrow 0 as n \rightarrow \infty . Thus, it follows from (4.13)--(4.18) that for any \eta > 0,

lim
n\rightarrow \infty 

| \BbbE [Zn
V (s, t, h)] - \BbbE [ZV (s, t, h)]| \leq CT0\eta 

1
2 + CT0\eta + lim

n\rightarrow \infty 
I3 = CT0\eta 

1
2 + CT0\eta .
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2876 YUN LI, FUKE WU, AND JI-FENG ZHANG

The arbitrariness of \eta implies that (4.11) follows. Therefore,

MV (t) := V (Y (t)) - V (Y (0)) - 
\int t

0

\int 
U

\=Lu(Y (s),\scrL (Y (s)))V (Y (s))ms(du)ds

is a martingale with respect to \scrG 0
t := \sigma \{ Y (s),ms(\cdot ), \xi ; 0 \leq s \leq t\} . Furthermore, m(\cdot )

is an admissible relaxed control for the limit problem (3.9)--(3.11). In fact, sinceMV (t)
is a martingale with respect to \scrG 0

t , there exists an extension (\~\Omega , \~\scrF , \{ \~\scrG 0
t \} 0\leq t\leq T0 ,

\~\BbbP ) of
(\Omega ,\scrF , \{ \scrG 0

t \} 0\leq t\leq T0 ,\BbbP ) on which there lives an \{ \~\scrG 0
t \} -adapted Brownian motion \~W (\cdot ),

such that ( \~Y (\cdot ), \~m(\cdot ), \~W (\cdot )) satisfies (3.9) and \scrL ( \~Y (0)) = \scrL (\zeta ). Here,

\~Y (\~\omega ) = Y (\theta \~\omega ), \~m(\~\omega ) = m(\theta \~\omega ),

and the mapping \theta : (\~\Omega , \~\scrF ) \rightarrow (\Omega ,\scrF ); see [45, Definition 5.9, p. 40] for more details.
Note that by the definition of extension of probability space, \~m(t) and \~Y (0) is measur-
able with respect to \~\scrG 0

t . Then, we consider the limit problem (3.9)--(3.11) on this new
probability space (\~\Omega , \~\scrF , \{ \~\scrG 0

t \} 0\leq t\leq T0
, \~\BbbP ). Moreover, we deduce that \~m(\cdot ) is admissible

for the limit problem since \~W (\cdot ) is a \{ \~\scrG 0
t \} -adapted Brownian motion and the initial

conditions \~\xi , \~Y (0) are measurable with respect to \~\scrG 0
t . Therefore, for convenience of

notation, in this theorem, we use directly the original probability space and state that
m(\cdot ) is admissible for the limit problem.

Step 3: Convergence of the cost functional J\varepsilon n(\cdot ). According to assumptions
(H3), (H4), (3.8), and (4.6), | J(m(\cdot ))| \leq CT0

. Recall that

J\varepsilon n(m\varepsilon n(\cdot ))

= \BbbE 
\Bigl[ \int T0

0

\Bigl( \int 
U

R1(Y
\varepsilon n(s), \nu \varepsilon ns , u)m\varepsilon n

s (du) +R2(X
\varepsilon n(s), \mu \varepsilon n

s , Y \varepsilon n(s), \nu \varepsilon ns )
\Bigr) 
ds
\Bigr] 

+\BbbE [Q(Y \varepsilon n(T0), \nu 
\varepsilon n
T0
))].

Then, by the same technique as Step 2, J\varepsilon n(m\varepsilon n(\cdot )) \rightarrow J(m(\cdot )) as n \rightarrow \infty can be
proved. So, we omit the proof.

Remark 4.4. We can also prove the following result. Let u(\cdot ) be a feedback control
with the Lipschitz continuous function u0(y, \nu ), and let f1, R1 be Lipschitz continuous
with respect to the control component u. Then, the original problem (1.1)--(1.3) and
the limit problem (3.9)--(3.11) are well-defined under u0, and J\varepsilon (u0) \rightarrow J(u0) as
\varepsilon \rightarrow 0.

4.2. Nearly optimal control. In this subsection, we first build the nearly op-
timal control of the limit problem (3.9)--(3.11).

Theorem 4.5. Suppose that assumptions (H1)--(H4) hold, p \geq max\{ 4\gamma 1, 4\gamma 2, \gamma 3\} ,
\{ mn(\cdot )\} n\geq 1 \subseteq \scrR 0 is a sequence of the admissible relaxed controls, and Y n(\cdot ) denotes
the solution to (3.9) with m(\cdot ) = mn(\cdot ). Then, the following assertions hold:

(i) the sequence \{ (Y n(\cdot ),mn(\cdot ))\} n\geq 1 is tight in C([0, T0];\BbbR d2) \times \scrR (U \times [0, T0]),
and the limit of any weakly convergent subsequence (still indexed by n) satis-
fies (3.9);

(ii) if mn(\cdot ) \Rightarrow m(\cdot ), then m(\cdot ) \in \scrR 0 and J(mn(\cdot )) \rightarrow J(m(\cdot )) as n \rightarrow \infty ;
(iii) there exists an optimal control in \scrR 0.

Proof. Similar to Theorem 4.1, (i) and (ii) can be verified by using (3.12), the
weak convergence, and the martingale method. Next, we proceed to prove (iii). Since
| v0| < \infty , according to the definition of infimum, for any n \geq 1, we can choose an
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NEAR OPTIMALITY OF PERTURBED MCKEAN--VLASOV SYSTEMS 2877

mn(\cdot ) \in \scrR 0 such that v0 \leq J(mn(\cdot )) < v0 + 1
n . Let Y n(\cdot ) denote the solution to

(3.9) corresponding to the control mn(\cdot ). Then, by virtue of (i), (ii) and denoting by
(Y \ast (\cdot ),m\ast (\cdot )) the limit process, we have that (Y \ast (\cdot ),m\ast (\cdot )) satisfies (3.9), m\ast (\cdot ) \in \scrR 0,
and

J(mn(\cdot )) \rightarrow J(m\ast (\cdot )) as n \rightarrow \infty .

Therefore, J(m\ast (\cdot )) = v0, and the desired result follows.

Compared with the control problem of the classical SDEs, the relaxed controls can
also be approximated by the ordinary controls for the distribution-dependent case.
This result is collected in the following theorem.

Theorem 4.6. Suppose that assumptions (H1)--(H4) hold, p \geq max\{ 4\gamma 1, 4\gamma 2, \gamma 3\} ,
and for a relaxed control m(\cdot ) \in \scrR 0, (3.9) has a unique weak solution. Then, for any
\delta > 0, there exists a piecewise constant ordinary admissible control u\delta 

m(\cdot ) for the limit
problem (3.9)--(3.11) such that

| J(u\delta 
m(\cdot )) - J(m(\cdot ))| \leq \delta .

This theorem can be established by using the same method as the case of the
classical SDEs [13, 23]. So, we omit the proof. Moreover, by applying the optimal
relaxed control m\ast (\cdot ) to Theorem 4.6, we can get a \delta -optimal control u\delta 

m\ast (\cdot ) of the
limit problem (3.9)--(3.11).

Next, the theorem below illustrates that nearly optimal control of the original
problem (1.1)--(1.3) (or the revised problem with relaxed control (3.1)--(3.3)) can be
obtained by simply solving the limit problem (3.9)--(3.11).

Theorem 4.7. Let assumptions (H1)--(H4) hold and p \geq max\{ 4\gamma 1, 4\gamma 2, \gamma 3\} . Sup-
pose that for any \delta > 0, there exists a feedback control u\delta (\cdot ) with the Lipschitz contin-
uous function u\delta 

0(y, \nu ), which is \delta -optimal for the limit problem (3.9)--(3.11). Then,
the revised problem with relaxed control (3.1)--(3.3) converges to the limit problem
(3.9)--(3.11) in the sense of the convergence of their optimal values:

lim
\varepsilon \rightarrow 0

v\varepsilon = v0.

Moreover, the feedback control associated with u\delta 
0 is nearly optimal for the revised

problem with relaxed control and the original problem in the sense:

lim sup
\varepsilon \rightarrow 0

[J\varepsilon (u\delta 
0) - v\varepsilon ] \leq \delta 

and

lim sup
\varepsilon \rightarrow 0

\bigl[ 
J\varepsilon (u\delta 

0) - inf
u\varepsilon (\cdot )\in \scrU \varepsilon 

J\varepsilon (u\varepsilon (\cdot ))
\bigr] 
\leq \delta ,

respectively.

Proof. First, by Theorem 4.1 and Remark 4.4, we get

(4.26) J\varepsilon (u\delta 
0) \rightarrow J(u\delta 

0) as \varepsilon \rightarrow 0.

Since u\delta (t) = u\delta 
0(Y (t),L (Y (t))) is a \delta -optimal control of the limit problem, we have

(4.27) J(u\delta 
0) \leq v0 + \delta .
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2878 YUN LI, FUKE WU, AND JI-FENG ZHANG

According to (4.26), (4.27), and the definition of the limit, one can get

v\varepsilon \leq J\varepsilon (u\delta 
0) \leq J(u\delta 

0) + \theta \varepsilon \leq v0 + \delta + \theta \varepsilon ,

where \theta \varepsilon is a function of \varepsilon such that \theta \varepsilon \rightarrow 0 as \varepsilon \rightarrow 0. This together with the
arbitrariness of \delta implies that

(4.28) lim
\varepsilon \rightarrow 0

v\varepsilon \leq v0.

On the other hand, by the definition of infimum, we can choose m\varepsilon (\cdot ) \in \scrR \varepsilon such
that v\varepsilon \leq J\varepsilon (m\varepsilon (\cdot )) < v\varepsilon + \varepsilon . Then, it follows from Theorem 4.1 that there exists a
subsequence ofm\varepsilon (\cdot ) (still denoted bym\varepsilon (\cdot )) such thatm\varepsilon (\cdot ) \Rightarrow m(\cdot ) and J\varepsilon (m\varepsilon (\cdot )) \rightarrow 
J(m(\cdot )) as \varepsilon \rightarrow 0. Consequently,

lim
\varepsilon \rightarrow 0

v\varepsilon \geq lim
\varepsilon \rightarrow 0

J\varepsilon (m\varepsilon (\cdot )) = J(m(\cdot )) \geq v0.

This together with (4.28) yields that

lim
\varepsilon \rightarrow 0

v\varepsilon = v0.

Moreover, using (4.26) and (4.27), we have

lim sup
\varepsilon \rightarrow 0

[J\varepsilon (u\delta 
0) - v\varepsilon ] = J(u\delta 

0) - v0 \leq \delta ,

lim sup
\varepsilon \rightarrow 0

\bigl[ 
J\varepsilon (u\delta 

0) - inf
u\varepsilon (\cdot )\in \scrU \varepsilon 

J\varepsilon (u\varepsilon (\cdot ))
\bigr] 
\leq lim sup

\varepsilon \rightarrow 0
[J\varepsilon (u\delta 

0) - v\varepsilon ] \leq \delta .

Thus, the proof is completed.

5. Concluding remarks. In this paper, we have derived the near optimality of
the optimal control problems for the singularly perturbed McKean--Vlasov systems
by building the nearly optimal control of the corresponding limit problem. To obtain
the limit problem, we have proved the existence of the invariant probability measure
for the fast process and the weak convergence of the sequence \{ (Y \varepsilon (\cdot ),m\varepsilon (\cdot ))\} 0<\varepsilon \leq 1.
The results have generalized the results in [23, 24] to the McKean--Vlasov SDEs.

The coupling of the fast-slow processes is ubiquitous in practical applications,
such as in manufacturing systems. Hence, an interesting topic is to treat the fully
coupled systems in which the fast variable X\varepsilon (t) depends on the slow variables Y \varepsilon (t)
and L (Y \varepsilon (t)). However, the current approaches cannot be used to deal with the
corresponding systems; some novel methods are needed. This problem is challenging
and deserves further investigation.

Appendix A. Proof of Proposition 3.1. We divide the proof into three
steps.

Proof. Step 1: Existence and uniqueness of the strong solution. For any T > 0,
under assumption (H1), b and \sigma are continuous and linearly growing. Consequently,

(3.4) has a weak solution ( \~X, \^\~W ), (\~\Omega , \~\scrF , \~\BbbP ), \{ \~\scrF t\} 0\leq t\leq T with the initial value L ( \~X(0)) =
L (\xi ). For more details, readers can refer to [17].

In what follows, we establish the pathwise uniqueness of the weak solution. Let

( \^X, \^\~W ), (\~\Omega , \~\scrF , \~\BbbP ), \{ \^\scrF t\} 0\leq t\leq T be another weak solution to (3.4) with common initial

value, i.e., \~\BbbP \{ \~X(0) = \^X(0)\} = 1. Then, by the It\^o formula and (H2), we obtain
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| \~X(t) - \^X(t)| 2 =

\int t

0

[2\langle \~X(s) - \^X(s), b( \~X(s),L ( \~X(s))) - b( \^X(s),L ( \^X(s)))\rangle 

+\| \sigma ( \~X(s),L ( \~X(s))) - \sigma ( \^X(s),L ( \^X(s)))\| 2]ds

+2

\int t

0

\langle \~X(s) - \^X(s), (\sigma ( \~X(s),L ( \~X(s))) - \sigma ( \^X(s),L ( \^X(s))))d \^\~W (s)\rangle 

\leq L1

\int t

0

W2(L ( \~X(s)),L ( \^X(s)))2ds

+2

\int t

0

\langle \~X(s) - \^X(s), (\sigma ( \~X(s),L ( \~X(s))) - \sigma ( \^X(s),L ( \^X(s))))d \^\~W (s)\rangle .

Taking the expectation on both sides and using the Gr\"onwall inequality, one obtains

\~\BbbE | \~X(t) - \^X(t)| 2 = 0.

This together with the continuity of \~X(\cdot ) and \^X(\cdot ) implies that the pathwise unique-
ness holds. Let \~\mu t = L ( \~X(t)), and consider the classical SDE

(A.1) dX(t) = b(X(t), \~\mu t)dt+ \sigma (X(t), \~\mu t)d \^W 1(t).

For initial value \xi , we get that ( \~X, \^\~W ), (\~\Omega , \~\scrF , \~\BbbP ), \{ \~\scrF t\} 0\leq t\leq T is a weak solution to
(A.1). Using the same technique as the above proof of the pathwise uniqueness and
the classical Yamada--Watanabe principle [19], (A.1) has a unique strong solution
(X(t))0\leq t\leq T satisfying X(0) = \xi . Thus, by the modified Yamada--Watanabe principle
[15], the arbitrariness of T implies that (3.4) has a unique strong solution (X(t))t\geq 0.

Step 2: \bfitP th moment estimate (3.5). For any x \in \BbbR d1 and \mu \in \scrP 2(\BbbR d1), assump-
tions (H1), (H2), and the Young inequality imply that

(A.2) 2\langle x, b(x, \mu )\rangle + (p - 1)\| \sigma (x, \mu )\| 2 \leq L0  - (L2  - \theta )| x| 2 + (L1 + \theta )[\mu ]2,

where \theta = L2 - L1

4 > 0 and L0 is a positive constant. By the It\^o formula and (A.2),
one can get

| X(t)| pe
p
2 (L2 - L1 - 3\theta )t

\leq | \xi | p + p

2
(L2  - L1  - 2\theta )

\int t

0

e
p
2 (L2 - L1 - 3\theta )s| X(s)| pds+ C

\int t

0

e
p
2 (L2 - L1 - 3\theta )sds

+
p

2

\int t

0

e
p
2 (L2 - L1 - 3\theta )s| X(s)| p - 2[(L1 + \theta )W2(L (X(s)), \delta 0)

2  - (L2  - \theta )| X(s)| 2]ds

+p

\int t

0

e
p
2 (L2 - L1 - 3\theta )s| X(s)| p - 2\langle X(s), \sigma (X(s),L (X(s)))d \^W 1(s)\rangle .

Taking the expectation and using the H\"older inequality, we have

\BbbE | X(t)| p \leq \BbbE | \xi | p \cdot e - 
p
2 (L2 - L1 - 3\theta )t + C

\int t

0

e - 
p
2 (L2 - L1 - 3\theta )(t - s)ds \leq C,

where constant C is independent of t. Therefore, the desired conclusion is acquired.
Step 3: Existence and uniqueness of the invariant probability measure. At this

step, for the sake of completeness, we will only give a brief proof of the existence and
uniqueness of the invariant probability measure for (3.4). For more details, readers can

D
ow

nl
oa

de
d 

10
/0

7/
22

 to
 1

24
.1

6.
14

8.
23

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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refer to [39, Theorem 3.1]. For any \mu 0, \mu 
\prime 
0 \in \scrP p(\BbbR d1), let (X(t))t\geq 0 and (X \prime (t))t\geq 0 be

two solutions to (3.4) such that L (X(0)) = \mu 0, L (X \prime (0)) = \mu \prime 
0, and Wp(\mu 0, \mu 

\prime 
0)

p =
\BbbE | X(0) - X \prime (0)| p. Set P \ast 

t \mu 0 = L (X(t)) and P \ast 
t \mu 

\prime 
0 = L (X \prime (t)) for any t \geq 0. Then,

by the It\^o formula, assumption (H2), and (3.4), it follows that

| X(t) - X \prime (t)| pe
p
2 (L2 - L1)t

\leq | X(0) - X \prime (0)| p  - p

2
L1

\int t

0

e
p
2 (L2 - L1)s| X(s) - X \prime (s)| pds

+
p

2
L1

\int t

0

e
p
2 (L2 - L1)s| X(s) - X \prime (s)| p - 2W2(L (X(s)),L (X \prime (s)))2ds

+p

\int t

0

e
p
2 (L2 - L1)s| X(s) - X \prime (s)| p - 2\langle X(s) - X \prime (s),

(\sigma (X(s),L (X(s))) - \sigma (X \prime (s),L (X \prime (s))))d \^W 1(s)\rangle .

Taking the expectation and using the definition of Lp-Wasserstein distance, one gets

(A.3) Wp(P
\ast 
t \mu 0, P

\ast 
t \mu 

\prime 
0)

p \leq \BbbE | X(t) - X \prime (t)| p \leq Wp(\mu 0, \mu 
\prime 
0)

pe - 
p
2 (L2 - L1)t \forall t \geq 0.

Then, by (A.3) and the relation

(A.4) P \ast 
t (P

\ast 
s \delta 0) = P \ast 

t+s\delta 0 \forall s, t \geq 0,

we have that \{ P \ast 
t \delta 0\} t\geq 0 is a Cauchy sequence in \scrP p(\BbbR d1). Therefore, there exists a

\mu \in \scrP p(\BbbR d1) such that

(A.5) lim
t\rightarrow \infty 

Wp(P
\ast 
t \delta 0, \mu ) = 0.

Moreover, using (A.3)--(A.5), we can prove that \mu is an invariant probability measure,
and for any initial distribution \mu 0 \in \scrP p(\BbbR d1),

Wp(P
\ast 
t \mu 0, \mu )

p = Wp(P
\ast 
t \mu 0, P

\ast 
t \mu )

p \leq Wp(\mu 0, \mu )
pe - 

p
2 (L2 - L1)t \forall t \geq 0.

The proof is completed.

Appendix B. Proof of Proposition 3.3. We divide the proof into two steps.

Proof. Step 1: Existence and uniqueness of the strong solution. For any m\varepsilon (\cdot ) \in 
\scrR \varepsilon , applying assumption (H3), we have that for any t \geq 0, \omega \in \Omega , u \in \BbbR r, y1, y2 \in \BbbR d2 ,
and \nu 1, \nu 2 \in \scrP 2(\BbbR d2),

| f(X\varepsilon (t), \mu \varepsilon 
t , y1, \nu 1, u) - f(X\varepsilon (t), \mu \varepsilon 

t , y2, \nu 2, u)| 
\vee \| g(X\varepsilon (t), \mu \varepsilon 

t , y1, \nu 1) - g(X\varepsilon (t), \mu \varepsilon 
t , y2, \nu 2)\| 

\leq 2L(| y1  - y2| +W2(\nu 1, \nu 2)),

where \mu \varepsilon 
t = L (X\varepsilon (t)). Moreover, assumption (H4) and Remark 3.2 give that for any

T > 0,

\BbbE 
\Bigl[ \int T

0

\int 
U

| f(X\varepsilon (t), \mu \varepsilon 
t , 0, \delta 0, u)| 4m\varepsilon 

t (du)dt
\Bigr] 
\leq CK4

\int T

0

(1 + \BbbE | X\varepsilon (t)| 4\gamma 1)dt \leq CT ,

\BbbE 
\Bigl[ \int T

0

\| g(X\varepsilon (t), \mu \varepsilon 
t , 0, \delta 0)\| 4dt

\Bigr] 
\leq CK4

\int T

0

(1 + \BbbE | X\varepsilon (t)| 4\gamma 2)dt \leq CT .
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These, together with the existence and uniqueness of the solution to McKean--Vlasov
SDEs, imply that the slow-varying equation in (3.1) has a unique strong solution on
[0, T ]; see [10, Theorem 3.3] for more details. Consequently, the arbitrariness of T
yields the desired result.

Step 2: Moment estimate (3.6). Using the H\"older inequality, we compute

| Y \varepsilon (t)| 4 \leq 27| \zeta | 4 + 27T 3

\int t

0

\int 
U

| f(X\varepsilon (s), \mu \varepsilon 
s, Y

\varepsilon (s), \nu \varepsilon s , u)| 4m\varepsilon 
s(du)ds

+27
\bigm| \bigm| \bigm| \int t

0

g(X\varepsilon (s), \mu \varepsilon 
s, Y

\varepsilon (s), \nu \varepsilon s)dW
2(s)

\bigm| \bigm| \bigm| 4,
where \nu \varepsilon s = L (Y \varepsilon (s)). For any t \in [0, T ], by assumptions (H3), (H4), the Burkholder--
Davis--Gundy inequality, and Remark 3.2, one can calculate that

\BbbE 
\Bigl[ 

sup
0\leq s\leq t

| Y \varepsilon (s)| 4
\Bigr] 

\leq C\BbbE | \zeta | 4 + CL4T (T 2 + 1)\BbbE 
\Bigl[ \int t

0

\bigl( 
| Y \varepsilon (s)| 4 +W2(\nu 

\varepsilon 
s , \delta 0)

4
\bigr) 
ds
\Bigr] 

+CK4T (T 2 + 1)\BbbE 
\Bigl[ \int T

0

\bigl( 
1 + | X\varepsilon (s)| 4\gamma 1 + | X\varepsilon (s)| 4\gamma 2 +W2(\mu 

\varepsilon 
s, \delta 0)

4
\bigr) 
ds
\Bigr] 

\leq CT (1 + \BbbE | \zeta | 4) + CT

\int t

0

\BbbE 
\Bigl[ 

sup
0\leq r\leq s

| Y \varepsilon (r)| 4
\Bigr] 
ds.

Furthermore, by the Gr\"onwall inequality, the required assertion follows.
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